Showing posts with label data acquisition. Show all posts
Showing posts with label data acquisition. Show all posts

Wednesday, 30 April 2014

The Austro-Hungarian emplacements on top of Mt. Roteck

(2390m)
Dolomites / South-Tyrol 

 A case study for extensive survey and documentation on occasion of the 100th anniversary of the beginning of WW1 on the Italian front in May 2015.

As reported on ATOR in summer 2013, Arc-Team is pushing ahead the plan of  mapping extensive areas of the high alpine frontline of WW1 from the Swiss border to the Dolomites.
Our approach consists in a very detailed DGPS-survey, terrestrial structure from motion, geolocalized images, archeological description and aerial survey by our drone.
Of course we are basing the whole working process on Open Source Soft- and, where possible , also on Hardware.
Now we want to share the latest version of a presentation, given originally in occasion of the 7th Fields Of Conflict Conference in Budapest (Hungary) in October 18.-21. 2012.
It outlines the characteristics of the high alpine working environment, the nature of the WW1 remains, the challenges to meet, our project strategy and first results.

Friday, 18 April 2014

How to take pictures for photomosaics in narrow conditions: A clever solution for a common archaeological fieldwork problem.


Everyone who works on archaeological excavations knows situations like this:


A narrow and deep trench or a wall near to the limit of the excavation area.

If subsequently we have to make a photomosaic of the profile or facade, it means:

  • either photographing from the top, hazarding the consequences like distorsion:

  • or splitting the photomosaik in numerous single tiles, and that means a lot of work!


A very simple and clever solution for this problem can be the use of a mirror:

Putting it down in an inclined position on the ground and positioning yourself on the opposite side (watch the illustration beneath and heed me kneeing outside of the trench), it allows you to take a shot of the reflection of your facade in the mirror.

Of course the picture will show the object mirror-inverted, but don't worry:
The rectification software will fix it again...


Thanks a lot to Granma for borrowing us her wonderful kitsch bedroom-mirror!

Thursday, 27 February 2014

Digital Archaeology at Lund University

This year, as usual since 2011, +Alessandro Bezzi and me taught some lessons during the course "Archaeology and Ancient History: Digital Archaeology, GIS in Archaeology" at Lund University, held by +nicolò dell'unto. We used the opportunity to update the presentation with which we always start the first lecture. Here below you can see its last version, done with impress.js (just click on the first slide and us the spacebar to navigate).



For a better view, click here

The main topic is digital archeology (or "computational archeology", as it is also known in Italy). 
Initially we define five main operations that are common to any archaeological project: data acquisition, processing, management, analysis and sharing. The first three steps refer to the documentation work-flow, while the last three actions are related with the real research process (of course data management is in common with both of the phases).
Thereafter we analyze each step, starting with data acquisition, which is mainly based on hardware devices. During this operation are normally registered two elements, points and pictures, in order to virtually recover what the archaeological excavation is destroying. With points and pictures it is possible to document objects (artifacts and ecofacts) and actions (basically the archaeological samplings), and their elaboration or, in some cases combination, allows the researchers to record lines, polygon, 3d surfaces and real volumes, to register also the most complex elements of the archaeological record (layers, structures, etc...).
On the contrary of what happen with data acquisition, data processing is mainly based on software. Nowadays it can be divided into two orders of operations: standard procedures (raw coordinates elaboration, 2D photomapping, 2D vector archaeological drawing) and advanced techniques (3D restitution, volume calculation and 3D modeling). The very first and basic step to visualize recorded data is to elaborate the raw coordinates, registered with a total station or a RTK GPS, into a GIS readable code (e.g. CVS or WTK). Combining points and pictures is also possible to create georeferenced photomosaic, using a photomapping techniques (e.g. the metodo Aramus, the Khovle method or the newest Corte Inferiore method). Once obtained a complete georeferenced photomosaic it is possible to use a GIS to draw over the raster level, using one or more vector layers and to connect them with a database. Advanced techniques of documentation are more directly related with 3D and can be based on different methodology to extract morphological, topological and metric informations from one or more pictures (e.g. SvR, SfM, IBM, 3D photogrammetry, etc...). With these informations it is possible to calculate the real volumes of the elements of the archaeological records and use this data to reconstruct the depositional and post-depositional processes, using, when necessary, 3D modeling. Normally, during the different work-flows that can be involved in data processing, many kind of informations are elaborated with raster, vector and voxel graphic in 2 (x,y), 3 (x,y,z) or 4 (x,y,z,t) dimensions. The final aim is to set up a system which is able to handle such a variety of data and this system is the GIS.
In fact GIS software, combined with DBMS, are extremely useful during the data management phase, exactly for their capacity to handle different kind of informations (as many as are the disciplines or sciences which help archeology in its task). The use of such instruments helps to optimize the research, especially in comparison with the traditional techniques, not only during data management, but also during the more delicate stage of data analysis (when most of the cognitive processes are involved).
Among other things, in this fourth step, it is more evident the importance of using open source software and tools to maintain a continuous control on every single process of a study that can lead to the elaboration of new theories. Of course, not all the the analysis are equally sensitive under this aspect: for the simplest researches (anastylosis, building techniques, basic geomorphology, etc...) it is not strictly mandatory to know the source code of the applications, also because in these cases the main examinations are done directly by humans. On the other hand, for more complex studies (landscape archeology and Cost Surface Analysis, statistics, advanced geomorphology, etc...), it is very important to have a complete access to  the formulas and algorithms used by the software in order to keep an human control and do not completely delegate to the computer, among difficult quantitative calculations, also more delicate qualitative investigations (in which the human operator is still essential). In this way it is possible to correctly study all the different informations collected during the archaeological research, considering, at the same time, future integrations (GIS is an open system under a temporal point of view). The last goal of data analysis is to share results with the (scientific and non) community, which is the best way to improve the archaeological discipline itself, especially exploiting the potential of internet.
This lead us to the final step of an archaeological project (data sharing), which can follow different channels, like traditional publication, e-publication (e.g. webgis), exhibitions, etc... The most important thing, at least for scientific disclosure, is to grant a public access to all the informations used for the study (not only the filtered data, but also the raw data), in order to propose new hypothesis and (at the same time) give the all the necessary elements to verify them (no dogma, no authority principle).
To summarize the meaning of this contribution, considering archeology as a science (empiric approach) and a humanity (speculative approach), we can see how computational archeology helps to improve the scientific (empiric) approach, which is often underestimated, granting a more objective data acquisition and processing respects traditional techniques, especially during the critical phase of the archaeological excavation. In fact, unlike scientific experiments, the archaeological excavation is unrepeatable, being the most destructive approach of the discipline (and, at the same time, the most important).

PS

All the screenshots were done with ArcheOS. Some of them are related with really old projects, slowly we will replace them with more updated images...

Sunday, 14 October 2012

Extreme SfM: precarious situations and workplace safety

This post is a further contribution regarding the main benefit of SfM: its versatility. 
Thanks to its speed during the phase of data acquisition, this technique allows us to intervene quickly in the case where the archaeological excavation exposes precarious situations, often related with collapsing structures.
The image below is good example: we were working in the vicinity of a church, checking the excavator. The left pictures shows the part of a wall which was exposed during this operation, while the right photo reports the same subject just twenty minutes later.

The wall befor and after the collapse
Luckily, seen the precaurious conditions of the structure, we decided to document it with SfM and IBM techniques, and this is the 3D restitution of the wall before the collapse.

The 3D model of the wall
However, the documentation of archaeological arthefacts before their destruction, is just one of the benefits of SfM (mainly related with the speed during data acquisition). In fact the versatility of this technique is strongly connected with the hardware we need to collect the data: a simple digital camera. This make it possible to work without the necessity of a direct contact with object to be documented (especially if we can support the excavation with a direct reflex total station, to record the Ground Control Points needed in the post-processing georeferencing operations). This way to operate lead to minimize the risk and increase the safety in the workplace. The images below regard an example of this situation: sometimes it happen to be called to evaluate the damnages of costruction sites, already underway without the archaeological control. In these cases it can happen to document precarious situation, but, using SfM techniques, there is no need to stand in risky places (like under a section with many gravel layers), because all the operations can be done from a safety distance.

The gravel section


The 3D puincloud (thin points)
The 3D pointcloud (thik points)
 I hope this post was useful, have a nice day!
BlogItalia - La directory italiana dei blog Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.