Showing posts with label Blender 3D. Show all posts
Showing posts with label Blender 3D. Show all posts

Saturday, 13 September 2014

Arc-Team wins a prize in an international conference in Brazil

Dr. Miamoto and the winner poster

Last week, from September 4th to 6th, the 12th Brazilian Congress of Forensic Dentistry took place in Florianópolis. The biennial event featured conferences and workshops by forensic professionals from Brazil, Uruguay, Peru and USA.

The attendees could also submit poster and short oral presentations to compete for the best academic works awards. The oral presentation "Protocol for Forensic Facial Reconstruction with open software: method simplification using MakeHuman" was one of the winners.

In this work, authors Cicero Moraes (Arc-Team member) and Dr. Paulo Miamoto explained how the application of MakeHuman to forensic facial reconstruction can aid this technique by simplifying and individualizing the anatomic modeling process, as well as allowing the operator to adjust the 3D humanoid template to soft tissue pegs and other objective parameters using the Blender export mode.


The winner poster (in Portuguese)
The method was also presented at one of the official conferences of the event by Dr. Miamoto. Moraes, a 3D Designer, and Miamoto, a Forensic Dentist, are members of the NGO "Brazilian Team of Forensic Anthropology and Legal Dentistry - Ebrafol", a non-profit organization that aims the promotion of Human Rights by applying knowledges of the aforesaid sciences. One of Ebrafol's expectations is provide official forensic units with training on 3D technology using open software.

Originally pubblished at: http://www.makehuman.org/blog/makehuman_for_forensic_face_reconstruction_and_crime_investigation.html

Monday, 29 July 2013

Darcy's mysteries


After I reconstructed a face of a skeleton called Joaquim, placed in Medicine History Museum (MUHM),  I was invited to do other job for a skull that belonged to the same donator.

When I traveled to Porto Alegre to talk in a conference (FISL 14), I took the opportunity to know Joaquim, do a TV interview, and see the other skull.


In the first view I didn't see anything different on the structure of the skull. I took it in my hands to a room and I took some photos and make a 3D scanning.

I took pictures from top and bottom to make a complete 3D scanning with PPT-GUI.


When I saw the skull, I imagined that it belonged to a woman. To have more safety I sent the 3D mesh to Dr. Paulo Miamoto, a forensic specialist to make a report about the sex of the individual.


To my surprise, the report was inconclusive. The protocol have a range o 1 to 5. 1 is a lot woman, and 5 is a lot man, the result was 2,4!

We take the opinion of other specialists and a half told that was a woman, a half that was a man.

Because this ambiguity, we starts to call the skull with a Portuguese neutral name: Darcy.

This was one of the misteries, the other appeared during the 3D modeling.


In the video above we have the process of the reconstruction. Apparently it doesn't hane anithyng different with the shape of the face.

When I put the skin, I noted that in the area of the top of the head I had to decrease the volume a lot.

When we see the two mesh side-by-side, Joaquim (an little man at left) and Darcy (at right), we can see a notorious difference at the top of the head.

The skull was submitted to a neurologist to be analyzed.

I don't have any knowledge not even for speculate about the result. We have to wait.


I hope you enjoy.

A big hug and see you in the next!

Wednesday, 17 July 2013

Forensic facial reconstruction of a living individual using open-source software (blind test)


Studying alone is often a good solution when one cannot find support or has no understanding of something new and exciting, albeit not appealing to the general public.

Still, when it comes down to evolve and adapt scientific knowledge to the benefit of human beings, there is nothing better than having around people with the same goals, motivated to devote towards a better world, more accessible to those who have interest in that certain area of knowledge.

Earlier in 2012 I began my studies in the field of forensic facial reconstruction. Now, a year and a half later, over forty reconstructions have gone by, mostly of modern humans, some hominids and even a saber-teeth tiger.

Over that time, in the lectures I taught, in the e-mails I received or courses I offered, people often questioned me about the precision of the method, whether had I tested it in skulls of known people (living or not).

Graph representing the precision of a reconstruction (in millimeters) in relation to the skin of the volunteer, obtained by optical scanning. The blue areas represent areas where the face was reconstructed deeper than the real face, while the yellow areas represent regions in which the real face was deeper than the reconstructed mesh.


I had already done some experiments, but for technical reasons and in order to not disclose the identity of volunteers, I did not publish them. Instead, I was limited to showing the work of great artists such as Gerasimov from Russia, Caroline Wilkinson from England and Karen T. Taylor from USA.

Fortunately, a few days ago, research partner Dr. Paulo Miamoto sent me a scanned skull at my request, so I could test a newly developed technique to "wear" the skin over the virtual muscles. This skull, sent without much background on it, but with permission for reconstruction by its "owner", would be the first opportunity I had to show a case of facial reconstruction of a living person, exposing the degree of accuracy that such works may reach.

Development of the Work

A few days ago, I began to test a series of Blender modifiers, seeking an option that would allow me to "wear" the skin over a reconstruction in muscle stage. The goal was to make the process faster, and therefore more accessible to those who wish to replicate it, whether one is gifted with artistic skills or not.

I managed to find a solution with a modifier called Shrinkwrap (and a number of adaptations), as seen in the video above. The skull shown on the video is from another reconstruction in progress. It may seem almost imperceptible to a layman in forensic facial reconstruction, but it is a "blessing" for those who are just starting to work on virtual sculpture.

Back to the skull previously provided by Dr. Paulo Miamoto, it offered me the possibility to reconstruct a living person that was only known to him. He asked me for help with the configuration of the skull, since he would have to "assemble" the structure, because the CT was acquired by a Cone Beam tomograph.

Usually a cone beam CT captures only a portion of a skull due to a reduced field of view of the hardware. It is and equipment widely used for dental purposes and it is usually cheaper than a medical CT scanner.


An interesting fact in this story is that the whole process was done with open-source software. Initially, Dr. Miamoto opened the scans in InVesalius and filtered the part that corresponded to the bones. For this step he used a tutorial that I wrote, explaining the basic operation of InVesalius (translated from Portuguese): http://bit.ly/18mN6TR

Then he imported the three parts in MeshLab and aligned them in 3D space so that the face of the skull part stayed structure. All steps of this process were done thanks to the tutorials available at Mister P’s channel on Youtube: https://www.youtube.com/user/MrPMeshLabTutorials

After aligning the meshes the skull was exported as a .ply file and sent with the following anthropological data for the iorientation of the reconstruction:

- Gender: Male;

- Ancestry: miscegenated xanthoderm (of Japanese descent) and caucasian (white);

- Age: 20-30 years.

Upon receiving the skull I had to simplify the mesh, because the reconstructed CT had generated some areas with significant noise, inherent to the technique of image capture of Cone Beam CT scanners. Then I rebuilt the area of the skull that was missing by aligning it with another skull from my database, as recommended by the authors of the area. Thus, the work would be done more easily, with more spatial references.

With the skull cleaned and properly positioned in the Frankfurt plane, the virtual pegs used as reference for soft tissue depth were placed and sketches of the projections of the nose and face profile were done. As Asian and Native American individuals share physical anthropological traits that makes their skulls, a soft tissue depth table for the native indians from southwestern South America (Rhine, 1983) was used.

To speed up the process, a whole set of muscles, cartilage and glands was imported from another file. Obviously some changes needed to be donein order to fit it to the studied skul.

Gradually, one by one, the muscles were deformed and adapted to the skull.

At the end all the elements were positioned and contrary to what many people think, even with all the muscles of the face it is hard to get an idea of how the final work will look like, once finished.

For the configuration of the skin, the work followed the same method used for the muscles. A kind of general template is imported from another file.


And adapted until it fits the shape outlined by the profile sketch, muscles and soft tissue depth pegs.

It is possible to visualize the progressive shape transformation suffered by the skin mesh.

By placing the skin and "wearing it" over the muscles, I suspected the skull belonged to Dr. Miamoto. The shape of the chin and the side view highlighted some features that are evident in photographs (I do not know personally Dr. Miamoto). Upon questioning him, since in this field on cannot work with uncertainty, he told me “yes, it is his skull”.

Needless to say I was extremely pleased with the result.

Then it would be the time to test the quality of the reconstruction in relation to the face of skull "owner".

A test was done with a photograph, in which the reconstructed mesh was put over it and viewed from the same point of view. Note that the lips almost lined up with the 3D model.

Dr. Paulo then did the same process to filter the skin from the CT and sent it to me in another .ply another file. The file was aligned with the reconstruction, showing a rather large compatibility.

Finally a optical scan of the Dr. Paulo’s face (done apart from the CT scan) was aligned to the reconstructed  face. Note that again the line of the lips was quite compatible, as well as the nose breadth.


 The data of the reconstructed mesh and optical scanning mesh were loaded on CloudCompare and a 3D compatibility graphic was generated. A significant part of the reconstructed mesh differed only a few millimeters from the optical scanned mesh.

The part in blue, comprising the cheeks traditionally differs from scannings of the living individual because the soft tissue depth table used as reference was done on cadavers that may have undergone a slight change in its shape (due to dehydration and action of gravity upon its record).

This was an example of how a facial reconstruction done with open-source software can provide a rather satisfactory degree of compatibility with the living individual, provided it fulfills the current and already validated protocols.

The use of new technologies and specific tools in Blender 3D contribute to a satisfactory degree of compatibility of expression lines of the face, thus making the process faster and easier for those who wish to perform a reconstruction but often do not have an art training background.

The findings of this study are currently being structured as a scientific article. I hope to publish them in a peer-reviewed forensic journal, so that the technical aspects of using exclusively open-source software for forensic facial reconstruction can be adequately exposed and disseminated among those interested in this field.

Acknowledgements

To Dr. Paulo Miamoto for the continued partnership on several fronts of research involving open-source computer graphics to forensic science (and to translate this article for a decent English, thank you!)

To the Biotomo Imaging Clinic staff from Jundiaí-SP: Dr. Roberto Matai and Dr. Caio Bardi Matai for the CT scan of the reconstructed skull.

To the Laboratoř Morfologie a Forenzní Antropologie team, from Faculty of Sciences at Masaryk University in Brno, Czech Republic: Prof. Petra Urbanová, MSc. Mikoláš Jurda, MSc. Zuzana Kotulanová and BS. Tomáš Kopecký, for access to the collection of skeletal material of the Department of Anthropology, aid in research of photographic technique for photogrammetry purposes and optical scans.

To the Laboratório de Antropologia e Odontologia Forense (OFLAB-FOUSP) team, from Faculty of Dentistry at University of São Paulo: Prof. Rodolfo Francisco Haltenhoff Melani and MSc. Thiago Leite Beaini for supporting the works in Brazil.

To the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES):  for granting a scholarship for Abroad Doctoral Internship Program (PDSE).

Friday, 28 June 2013

A skeleton of Medicine's History Museum have his face revealed

Some days ago I was looking for some skull to reconstruct and present in my talk on Blender in Brazil. The talk will happen in the FISL14, one of the greatest free software conference in the world.

Fortunately I received an email from the Medicine's History Museum of Rio Grande do Sul (MUHM), that needed a forensic facial reconstrucion.

The nickname of the skeleton is Joaquim. He was a prisoner that died like a indigent in France in 1920. In 2006 he was donated to the museum by a family of doctors.

I ordered a CT-Scan and the people of the museum sent me not only the head, but all Joaquim's body.

So, I'll reconstruct all the body, but for now only the head was done.

To reconstruct the bones in 3D I used InVesalius, a CT-Scan reader open source. It was necessary export some files with different configurations, because the amount of data is huge.

Like I said, in this first part of Joaquim Project I'll reconstruct only the face. In the Meshlab I cleaned the noise of 3D reconstruction of CT-Scan.

The skull was not complete. To get the mandible I made a projection using Sassouni/Krogman method shown in Karen T. Taylor's book.

With the help of forensic dentist Dr. Paulo Miamoto, we get the range of Joaquim's age: 30-50.

The tissue depth markers was put.

So it was possible to sketch the profile of the face.


 The muscles was glued at the skull.



 Finally, the skin, the cloth and the hair was put.

I don't know if Joaquim really was born in France, but he appear a French man.

Thanks to:
Éverton Quevedo and Letícia Castro from MUHM.

A big hug and I see you in the next!

Wednesday, 12 June 2013

Paranthropus boisei - forensic facial reconstruction

In the first works I made involving forensic facial reconstruction, It was important to me modeling all from scratch. More than to model, I created all textures and illumination in each new work.


With the time, and with the experience, I noticed that some properties of that works repeated constantly.

Because this, I developed a methodology to make the reconstruction faster, both with humans as hominids.

In this post I'll show you how was the reconstruction of a Paranthropus boisei. The work, how ever, it have the help of the archaeologist Dr. Moacir Elias Santos. He took some excellent photos that was the base of the 3D scanning with PPT-GUI.

Using CT-Scans of a Pongo pygmaeus and a Pan troglodytes (chimp) how references, the muscles was modeled.

Because of the morphology, we decided to use a CT-Scan of a chimp how reference to be deformed and match it with the mesh of the P. boisei. We used InVesalius to reconstruct the CT-Scan in a 3D mesh.


While I deformed the skull, the skin got the appearance of a new hominid.

The resulting mesh was the reference of the final model.

Instead of modeling the P. boisei from scratch, I imported the mesh of an Australopithecus afarensis to be deformed and match it with the skin base deformed from a CT-Scan.

By editing the mesh was possible conform it with the skull and the muscles of the P. boisei.

The edition of the mesh in Blender Sculpt Mode was done with a digital tablet Bamboo by Wacom (CTL-470). Surprisingly it was not necessary install anyone driver on Ubuntu Linux.


To finish the work, I made the texturing and put the hair. The render was done with Cycles.

I hope you enjoyed.

A big hug!

BlogItalia - La directory italiana dei blog Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.